University Website | 中文 | English
Location: Home >> Perspectives >>

【Hui WANG】 A Scalar Dynamic Conditional Correlation Model: Structure and Estimation

Published:2019-01-08  Views:

The paper “A scalar dynamic conditional correlation model: Structure and estimation”, written by Professor Hui WANG of the School of Finance and Professor Jiazhu PAN of University of Strathclyde, UK, was published in the 10th issue of “SCIENCE CHINA Mathematics” in 2018.

Abstract: The dynamic conditional correlation(DCC) model has been widely used for modeling the conditional correlation of multivariate time series by Engle(2002). However, the stationarity conditions have been established only recently and the asymptotic theory of parameter estimation for the DCC model has not yet to be fully discussed. In this paper, we propose an alternative model, namely the scalar dynamic conditional correlation(SDCC) model. Sufficient and easily-checked conditions for stationarity, geometric ergodicity, andβ-mixing with exponential-decay rates are provided. We then show the strong consistency and asymptotic normality of the quasi-maximum-likelihood estimator(QMLE) of the model parameters under regular conditions.The asymptotic results are illustrated by Monte Carlo experiments. As a real-data example, the proposed SDCC model is applied to analyzing the daily returns of the FSTE(financial times and stock exchange) 100 index and FSTE 100 futures. Our model improves the performance of the DCC model in the sense that the Li-Mc Leod statistic of the SDCC model is much smaller and the hedging efficiency is higher.

Keywords: Dynamic Conditional Correlation; Stationarity, Ergodicity; QMLE; Consistency; Asymptotic Normality

上一条:Yumei GUO: ThePolicy Practice and Improvement Measures of Expectations Management 下一条:【Xueyong ZHANG】Underwriter Reputation Damage and Post-IPO Performance: Evidence from IPO Fraud of Chinese Listed Companies